centrifugal pump solved examples|centrifugal pump catalogue pdf : exporter The document contains 5 solved problems related to centrifugal pumps. The problems cover topics like calculating head, power required, efficiency, … Centrifugal pumps are ideal for pumping fluids that are not very viscous. Custom centrifugal pumps, italian manufacturer of industrial pumps. . Italy +39 0331 681044
[email protected] Opening Hours. 08.00 – 12.30 14.00 – 18.00. AUTHORIZED SERVICE Repair - Overhaul - Sale.
{plog:ftitle_list}
Pre-mixing and heating washing modular, including pre-mixing tank, mud agitator, submersible slurry pump( for feeding to shale shaker), liquid level meter and other accessories.
Centrifugal pumps are widely used in various industries for fluid transportation and are known for their efficiency and reliability. In this article, we will explore a centrifugal pump example to understand how these pumps work and how to calculate important parameters.
The document contains 5 solved problems related to centrifugal pumps. The problems cover topics like calculating head, power required, efficiency,
Example:
A centrifugal pump has an outlet diameter equal to two times the inner diameter and is running at 1200 rpm. The pump works against a total head of 75 m. We need to calculate the velocity of flow through the impeller.
Solution:
To calculate the velocity of flow through the impeller, we can use the formula:
\[ V = \frac{Q}{A} \]
Where:
- \( V \) = Velocity of flow (m/s)
- \( Q \) = Flow rate (m\(^3\)/s)
- \( A \) = Area of the impeller (m\(^2\))
First, we need to calculate the flow rate using the formula:
\[ Q = \frac{\pi \times D^2 \times N}{4 \times 60} \]
Where:
- \( D \) = Diameter of the impeller (m)
- \( N \) = Pump speed (rpm)
Given that the outlet diameter is two times the inner diameter, we can calculate the diameter of the impeller:
Inner diameter, \( D_i = D \)
Outlet diameter, \( D_o = 2D \)
Area of the impeller, \( A = \frac{\pi}{4} \times (D_o^2 - D_i^2) \)
Substitute the values and calculate the flow rate:
\[ Q = \frac{\pi \times (2D)^2 \times 1200}{4 \times 60} \]
Next, we calculate the area of the impeller:
\[ A = \frac{\pi}{4} \times ((2D)^2 - D^2) \]
Now, we can calculate the velocity of flow using the formula mentioned earlier.
Dimensionless performance curves for a typical centrifugal pump from data given in Fig. 14.9 Fig. (14.10)
KBS series is submersible slurry pump with 4-pole motor for increased lifetime and greater convenience. High chrome alloy impeller combined with agitator is designed for pumping heavy slurry. Slim pump body with a top discharge design enables pump installation in narrow spaces. The pump is also designed for pumping bentonite mixed water in .
centrifugal pump solved examples|centrifugal pump catalogue pdf